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Abstract

Environmental conditions promoting the occurrence and high abundance of non-na-
tive taxa are linked to critical stages of species invasions: establishment, whether a site 
can sustain a population of the non-native taxon, and impact, the extent to which the 
consequences of establishment negatively affect the invaded ecosystem. Using surveys 
across environmental gradients, we examined the physicochemical conditions associ-
ated with the occurrence and abundance of the invasive New Zealand mudsnail (Pota-
mopyrgus antipodarum) and co-occurring native mollusks. Abundance of Potamopyrgus 
very strongly increased with stream width and conductivity (specifically with chloride, 
sulfate, potassium, and sodium ions). Also, Potamopyrgus were most likely to occur at 
sites with relatively low pH and water velocity and relatively high calcium ion concen-
tration and abundance also slightly increased in these conditions. The physicochem-
ical conditions indicate the characteristics of sites that are suitable for establishment 
and secondary spread of Potamopyrgus. Native mollusks differed from Potamopyrgus in 
the physicochemical conditions associated with abundance suggesting that variation 
among habitats could permit native mollusks to persist at larger geographic scales even 
if they often co-occur with Potamopyrgus. Abundance of native Physa moderately de-
creased with abundance of Potamopyrgus. Because abundance of Physa and Potamopy-
rgus responded oppositely to stream width and conductivity, the negative relationship 
between the abundance of these two taxa may be caused by contrasting responses to 
physicochemical conditions, acting alone or in concert with biotic interactions.

Key words: establishment, impact, secondary spread, non-native, specific conductivity, 
stream width

Introduction

The environmental conditions critical to maintaining optimal evolutionary fit-
ness differ widely among organisms and ecosystems. For non-native organisms, 
environmental conditions dictate whether they can establish, increase in pop-
ulation size, and expand their geographic range (Lockwood et al. 2007; Davis 
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2009). Environmental conditions promoting the occurrence and high abun-
dance of non-native taxa are linked to critical stages of species invasions: estab-
lishment, which addresses whether a site can sustain a population of the non-na-
tive taxon, and impact, the extent to which the consequences of establishment 
will negatively affect the invaded ecosystem (Vander Zanden and Olden 2008). 
Establishment is also critical to secondary spread, expansion of non-native taxa 
beyond the primary site of introduction, because suitable habitat is required for 
non-native taxa to persist. Because non-native taxa that are established at one or 
a few sites have the potential to greatly expand their geographic distribution in 
the non-native range, halting or slowing secondary spread of non-native taxa is 
a critical strategy for managing biological invasions (Vander Zanden and Old-
en 2008). Although ecological impact of non-native taxa is difficult to predict 
(Parker et al. 1999), abundance is widely recognized as a significant contributor 
to impact from both a theoretical (Parker et al. 1999; Ricciardi 2003) and em-
pirical (Bradley et al. 2019; Strayer et al. 2019) standpoint. Thus, assessing the 
attributes that make sites suitable to establishment and high impact by particu-
lar non-native species are critical components to the successful management of 
non-native taxa.

In freshwater ecosystems, environmental conditions such as temperature, spe-
cific electrical conductivity, other aspects of water chemistry (e.g. specific ions, 
pH, nutrients), water velocity, light levels, substrate type, and surface area can 
affect organismal fitness. For example, water temperature affects both body size 
and size at maturity of ectotherms (Atkinson 1994, 1995; Angilletta et al. 2004), 
and ion concentrations differing substantially from organismal homeostatic lev-
els demand organisms to expend energy to maintain osmotic balance (Willmer 
et al. 2004; Cain et al. 2011). In freshwater mollusks, slight increases in water 
temperature can increase basal resources (benthic algae, Lamberti and Resh 1983) 
and can have consequences on individual and population growth rates of aquatic 
mollusks (Van der Schalie and Berry 1973; El-Emam and Madsen 1982; Parashar 
and Rao 1988; Verhaegen et al. 2021) and ion concentrations (measured as spe-
cific electrical conductivity) have diverse and substantial effects on both native 
and non-native taxa (reviewed in Dillon 2000). Densities of freshwater mollusks 
increase with conductivity in field surveys (Camara et al. 2012; Tchakonte et 
al. 2014) and conductivity affects growth and survival of freshwater mollusks in 
laboratory studies (Herbst et al. 2008; Vazquez et al. 2016; Larson et al. 2020). 
Calcium ions, specifically, can alter fitness or distributions of freshwater mollusks 
because they are used to create calcium carbonate shells as well as for muscle con-
tractions and nerve impulses (Thomas and Lough 1974; Madsen 1987; Dillon 
2000; Zalizniak et al. 2009).

Relatively low conductivity can reduce abundance and restrict the range of the 
invasive snail, Potamopyrgus antipodarum (Gray, 1853) which has colonized five 
continents and 39 countries worldwide (Geist et al. 2022). Although this invader 
tolerates a wide range of environmental conditions, some physicochemical con-
ditions including conductivity and temperature, can promote establishment and 
high densities. Outside the native range, densities of Potamopyrgus increase with 
conductivity (Kerans et al. 2005; Herbst et al. 2008; Moore et al. 2012; reviewed 
in Geist et al. 2022) and in the Greater Yellowstone ecosystem, Potamopyrgus only 
occurred in streams with geothermal activity and consequently high conductivi-
ty (Clements et al. 2011). Temperature affects life history traits, and thus evolu-
tionary fitness, in invasive populations of Potamopyrgus. Cool water temperatures 
delay reproduction (Dybdahl and Kane 2005), lead to larger body sizes (Dybdahl 
and Kane 2005; Verhaegen et al. 2021), and alter fecundity (lower: Dybdahl and 
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Kane 2005; higher: Verhaegen et al. 2021) relative to optimal water temperatures. 
To predict sites where Potamopyrgus are most likely to invade and achieve high 
abundance, more information is needed about specific physicochemical conditions 
associated with establishment and high abundances of this invasive snail.

To understand how conductivity, temperature, and other physicochemical con-
ditions affect the presence and abundance of Potamopyrgus and three sympatric 
native mollusks, we surveyed mollusks across a natural gradient in water chemistry 
and temperature created by geothermal springs (which release ions, minerals, and 
increase water temperature) in five rivers in the Greater Yellowstone Area (Grand 
Teton National Park, John D. Rockefeller, Jr. Memorial Parkway, and Yellowstone 
National Park). The three objectives of our study were: 1) to assess the physical and 
chemical conditions associated with the presence and abundance of the invasive 
snail, Potamopyrgus, 2) to determine the extent to which these environmental con-
ditions favoring Potamopyrgus differed from co-occurring native mollusks. Also, 
because Potamopyrgus can compete with (Lysne and Koetsier 2008; Riley et al. 
2008; Thon 2010; Larson and Black 2016) or facilitate (Cope and Winterbourn 
2004) native mollusks, our third objective was 3) to assess whether the abundance 
of Potamopyrgus predicted the abundance or occurrence of any native mollusk taxa, 
suggesting possible effects (negative or positive) of the non-native snail on sympat-
ric native mollusks.

Methods

Field survey

To assess the environmental factors associated with the presence and abundance of 
Potamopyrgus and sympatric native mollusks, in July 2014 and 2015 we surveyed 
biotic (abundances of co-occurring mollusks) and abiotic conditions (temperature, 
conductivity, ion concentrations, pH, stream velocity, and stream width) across 
an environmental gradient created by sampling sites above and below geothermal 
inputs (Table 1) in each of three (2015) to five (2014) rivers in the Greater Yel-
lowstone Area (Suppl. material 1) where Potamopyrgus had occurred in the past. 
Although there are other approaches to assessing the environmental variables asso-
ciated with the presence of Potamopyrgus, we focused on rivers where Potamopyrgus 
occurred and took advantage of variation in occurrence between sites above and 
below geothermal inputs to discern the environmental conditions associated with 
their occurrence and abundance.

At each site where we collected samples, we measured temperature, conduc-
tivity, pH, ion concentrations, stream width, and stream velocity using standard 
procedures for stream sampling. We measured temperature and conductivity at 
three locations (along each shoreline and in the middle of the stream) at each site 
using a sonde (Yellow Springs Instruments, model 85). We measured stream width 
at the greatest width at the water surface for each sampling site. We used the float 
method (Newbury and Bates 2017) three times/site to measure stream velocity. At 
each site, we collected two water samples (shoreline and mid-stream) to measure 
pH, cations, and anions. We filtered each sample using Whatman Grade GF/A 
glass microfiber 0.4 µm filters and cooled samples on ice. Within 12 hours of 
collection, we measured pH (Corning 430 pH meter) and acidified the sample for 
cation analysis with 0.5 M HCl until the pH dropped below 2. We refrigerated 
the cation samples and froze the anion samples until we analyzed them using ion 
chromatography (Thermo Fisher Scientific ICS 5000) at the Geochemical Analyt-
ical Laboratory (Geology and Geophysics Department, University of Wyoming).
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We used a stovepipe (0.032 m2) to sample abundance of mollusks at each 
site. We elutriated each stovepipe sample using 500-µm sieves to remove most 
cobbles, gravel, and other substrates and preserved each sample immediately 
in 95% ethanol. In July 2014, we collected 3–5 samples/site at 5 rivers along a 
single transect at a minimum of 50 meters from the geothermal hot spring. In 
July 2015, we sampled 10 replicates/site along 1 or 2 transects in 3 of the riv-
ers sampled in 2014, increasing the replicate number to obtain a more robust 
estimate of sample variance (Suppl. material 1). In 2015, we also omitted two 
of the rivers that we sampled in 2014: the Firehole River because the frequency 
and intensity of geothermal activity precluded a gradient in conductivity and 
the Gibbon River because we found only one live snail and no Potamopyrgus 
and our study design required Potamopyrgus to occur. At sites dominated by 
bedrock or high stream velocities, we collected longitudinal rather than trans-
verse transects (Suppl. material 1). In the laboratory, we sorted samples, identi-
fied mollusks to the genus level (Brown 1991), and counted snails to assess the 
abundance of each taxonomic group. The native mollusks that we found were 
Pyrgulopsis (Call & Pilsbry, 1886), Physa (Draparnaud, 1801), Galba (Schrank, 
1803) and Sphaerium (Scopoli, 1777) clams. We did not analyze abundance 
of Galba because they occurred in samples from only three of fourteen sites 
(Table 2).

Table 1. Abiotic factors differed widely among rivers and between sites above and below geothermal 
input. Sites were a minimum of 50 meters above or below geothermal inputs. All measurements are 
means except stream width, which is a single observation. Ion units are mg/L.

Abiotic 
Variable

Site 2014 2015

Marmot 
Springs

Polecat 
Creek

Crawfish 
Creek

Firehole 
River

Marmot 
Springs

Polecat 
Creek

Crawfish 
Creek

Temperature 
(°C)

Above 23.6 20.0 19.8 19.4 23.8 18.9 17.9

Below 24.0 22.8 20.4 21.7 24.5 18.1 22.9

pH Above 7.4 8.1 7.8 8.2 8.0 7.7 8.5

Below 8.2 8.3 8.3 8.2 8.1 7.7 8.3

Conductivity 
(µS/cm)

Above 112.9 119.1 147.7 245.9 129.3 146.7 167.5

Below 121.7 129.1 299.4 287.1 143.2 153.5 307.9

Sodium cations 
(Na+)

Above 19.9 22.4 28.9 49.8 22.9 26.8 35.8

Below 24.4 21.3 37.0 58.1 25.0 28.8 45.5

Potassium 
cations (K+)

Above 3.6 3.8 2.9 5.1 4.0 3.3 3.4

Below 4.0 3.5 2.9 5.4 4.1 3.6 3.7

Magnesium 
cations (Mg+2)

Above 0.88 0.91 0.87 0.87 0.43 0.46 0.49

Below 0.84 0.84 0.89 0.87 0.41 0.47 0.44

Calcium 
cations (Ca+2)

Above 2.9 3.5 3.7 4.1 3.0 3.1 0.0

Below 2.8 3.3 4.2 3.9 2.9 3.2 4.3

Chloride 
anions (Cl-)

Above 8.5 11.1 12.5 35.7 10.7 13.0 15.0

Below 14.0 11.1 15.4 42.5 14.9 15.4 20.0

Sulfide anions 
(SO4

-)
Above 2.5 3.5 4.0 5.7 3.1 2.9 3.1

Below 2.7 3.9 3.3 5.8 3.1 3.3 3.4

Stream Width 
(m)

Above 2.2 1.3 3.0 3.5 2.2 1.3 3.0

Below 1.3 2.6 4.3 6.6 1.3 2.6 4.3

Stream 
Velocity (m/s)

Above 0.23 0.53 0.71 0.61 0.23 0.45 0.71

Below 1.22 0.35 0.53 0.44 0.87 0.25 0.51
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Statistical analyses

We used principal component analysis (PCA) to reduce the 11 abiotic independent 
variables (Table 1) to two uncorrelated principal components. Because we made 
multiple measurements for all variables except stream width, we analyzed mean 
values for each site (and year, for rivers with data from two years) such that each 
independent variable in the PCA resulted from 14 values (two sites at four rivers in 
2014 [the Gibbon River was excluded from all analyses because of mollusk rarity] 
and two sites at three rivers in 2015). We used scaled and standardized independent 
variables in the PCA (resulting in all metrics having a mean of zero and a standard 
deviation of 1). Based on the limited number of sample sites in our study and the 
broken stick model (Legendre and Legendre 2012) we selected the principal com-
ponents that explained more variance than random chance and the equilibrium 
circle of descriptors method (Legendre and Legendre 2012) to assess which princi-
pal component loadings were important for describing the principal components.

Because we had count data that was zero-inflated (all mollusk taxa were ab-
sent from > 27% of the samples) and overdispersed (Zuur et al. 2009), we used 
Zero-Inflated Negative Binomial (ZINB) regression models (using zeroinfl func-
tion with a log link for count models and a logit link for zero-inflated models in the 
pscl package in R; Zeileis et al. 2008) to address the extent that principal compo-
nents predicted abundance (Count Model) and occurrence (presence or absence: 
Zero-Inflation Model) of each mollusk taxon. Zero-inflated models are mixture 
models which address both occurrence and abundance of organisms and are ideal 
for analyzing count data with many zeros (Zuur et al. 2009). Zero-inflated models 
combine logistic regression to analyze occurrence (zeros v. non-zeros; Zero-Infla-
tion Model) and negative binomial GLM to analyze counts (zero and non-zeros; 
Count Model; Zuur et al. 2009). We included only first order terms in our anal-
yses because evaluating interactions in principal component analyses is precluded 
(Aiken and West 1991). We combined data from two years for three of the rivers 

Table 2. Abundance of Potamopyrgus (individuals/sample) and native mollusks varied among rivers, 
between sites above or below geothermal input, and between years. Abundance are means of the 
number of individuals in 5 (2014) or 10 samples (2015). Samples were collected above and below 
geothermal springs. Although we found Galba (Family Lymnaeidae), we excluded them because they 
did not occur above geothermal springs and only below geothermal springs in two rivers.

River Year Sample Potamopyrgus Pyrgulopsis Physa Sphaerium

Marmot 2014 Above 2.0 11.0 5.3 0.3

2015 Below 5.4 12.0 7.8 0.0

Above 9.2 39.5 25.5 0.1

Below 19.5 58.3 8.3 6.1

Polecat 2014 Above 76.4 0.2 2.6 11.2

2015 Below 33.6 35.2 0.0 11.0

Above 71.3 0.1 1.0 24.4

Below 46.8 39.5 1.0 18.8

Crayfish 2014 Above 0.2 0.0 0.0 1.8

2015 Below 5.0 0.0 1.6 1.4

Above 1.3 0.0 0.0 0.3

Below 5.1 0.0 0.0 0.3

Firehole 2014 Above 375.0 0.0 0.2 11.4

Below 179.2 0.0 0.8 1.4
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(Marmot, Polecat, Crayfish) because the auto-correlation function (ACF; Zuur et 
al. 2009) revealed no significant auto-correlations for any of the native mollusks 
and very slight auto-correlation in 10% of the cases for Potamopyrgus. Following 
Zuur et al. (2009), and given the limited number of observations in our study, we 
did not include an auto-correlation structure in any of the models.

We assessed whether abundance of Potamopyrgus affected the abundance or oc-
currence of each native mollusk taxon using zero-inflated negative binomial (ZINB) 
regressions with abundance of Potamopyrgus as the independent variable and the 
abundance of each of the native mollusk taxa (tested individually) as the dependent 
variable. We conducted all analyses and made all plots using R statistical package 
(Version RStudio 4.1.2, 2021 R Foundation for Statistical Computing, Vienna).

Results

Abundance of Potamopyrgus very strongly (p < 0.001) increased with stream width 
and conductivity, and specifically with concentrations of chloride (Cl-), sulfate 
(SO4

-2), potassium (K+), and sodium (Na+) ions, (PC1, 45.4% of variance; Table 
3, Table 4: Count Model, Figs 1, 2) and weakly (p = 0.10) increased with calcium, 
and relatively low water velocity and pH (PC2, 13.9% of variance; Table 3, Table 4: 
Count Model, Fig. 1). These same conditions also moderately promoted (p = 0.04) 
the occurrence of Potamopyrgus (PC2, Table 4: Zero-Inflation Model, Fig. 1).

Table 3. Loadings for principal components 1 (PC1 explains 45.4% of variance) and 2 (PC2, 
13.9%). We excluded loadings less than +/- 0.30 following Legendre and Legendre (2012).

Variables PC1 PC2

Temperature – –

pH – 0.577

Conductivity 0.374 –

Chloride anions 0.424 –

Sulfate anions 0.396 –

Potassium cations 0.301 –

Sodium cations 0.426 –

Calcium cations – -0.437

Magnesium cations – –

Water Velocity – 0.656

Stream Width 0.392 –

The abiotic predictors of abundance of native mollusks were distinct from Pota-
mopyrgus (Table 4, Fig. 1). In contrast to Potamopyrgus, abundance of Physa was 
very strongly reduced (p < 0.001), and abundance of sphaeird clams was somewhat 
reduced (p < 0.06), by increasing stream width and conductivity, and specifically 
with increasing concentrations of sodium, chloride, sulfate, and potassium ions, 
(PC1, Table 3, Table 4: Count Model, Fig. 1). Abundance of Pyrgulopsis was not 
predicted by any of the abiotic characteristics included in PC1 and PC2. Occur-
rence of native mollusks were not predicted by any of the variables that we mea-
sured (Table 4: Zero-Inflation Model).

Abundance of Potamopyrgus weakly increased (p < 0.07) with the abundance of 
Pyrgulopsis (Fig. 3a) but was not associated with occurrence of this native snail or 
with native Physa (Table 5). Abundance of Potamopyrgus and Physa were moder-
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ately negatively associated (p < 0.02; Table 5, Fig. 3b). In contrast, abundance of 
Potamopyrgus was not related to the abundance of Sphaerium clams but these clams 
were moderately more likely (p = 0.05) to occur at sites where Potamopyrgus were 
abundant (Table 5).

Discussion

We identified the physical attributes that promote high abundance of the in-
vasive snail Potamopyrgus and three sympatric native mollusks. Abundance of 
Potamopyrgus strongly increased with stream width and conductivity, and specif-
ically with chloride, sulfate, potassium, and sodium concentrations. Also, abun-
dance of Potamopyrgus weakly increased with calcium and relatively low water ve-
locity and pH and were more likely to occur at sites possessing these conditions. 
These physical conditions predict where the snail is most likely to achieve invasive 
densities and thus can reveal habitats most vulnerable to invasion. Because the 

Table 4. Zero-inflated negative binomial regression analyses reveal that the abiotic predictors of 
abundance (Count Model) differed between Potamopyrgus and the native mollusks. Abbreviations: 
SE = standard error, z = z-values, and p = p-values. P-values less than 0.05 are bolded.

Regression Model Coefficients Estimate SE z p

A. Potamopyrgus Count Model Intercept 3.75 0.19 19.71 <0.001

PC1 0.32 0.08 4.09 <0.001

PC2 -0.33 0.20 -1.65 0.10

Log Theta -.0.87 0.23 -3.78 <0.001

Zero-Inflation 
Model

Intercept -2.67 1.36 -1.97 <0.001

PC1 0.21 2.33 0.92 0.36

PC2 1.39 0.68 2.05 0.04

B. Pyrgulopsis Count Model Intercept 4.96 1.15 4.33 < 0.001

PC1 1.29 0.84 1.53  0.13

PC2 0.18 0.26 0.70 0.49

Log Theta -1.67 0.21 -7.79 < 0.001

Zero-Inflation 
Model

Intercept 49.03 133.20 0.37 0.71

PC1 69.37 180.98 0.38 0.70

PC2 6.16 29.02 0.21 0.83

C. Physa Count Model Intercept 1.20 0.25 4.73 <0.001

PC1 -0.50 0.12 -4.21 <0.001

PC2 0.29 0.29 1.02 0.31

Log Theta -1.43 0.22 -6.48 <0.001

Zero-Inflation 
Model

Intercept -33.45 99.19 -0.34 0.74

PC1 5.51 21.18 0.26 0.80

PC2 18.45 55.59 0.33 0.74

D. Sphaerium Count Model Intercept 2.01 0.27 7.55 < 0.001

PC1 -0.20 0.11 -1.85 0.06

PC2 -0.26 0.29 -0.90 0.37

Log Theta -1.26 0.29 -4.35 < 0.001

Zero-Inflation 
Model

Intercept -6.23 4.79 -1.30 0.19

PC1 -3.47 2.81 -1.23 0.22

PC2 1.84 1.19 1.56 0.12
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Figure 1. Relationships between Principal component 1 (x axis) and Principal component 2 show 
the chemical and physical attributes associated with mollusk abundance and occurrence. The points 
are means for each site. Abbreviations: Temp (temperature), Cond (conductivity), Na (sodium cat-
ions), K (potassium cations), Ca (calcium cations), Mg (magnesium cations), Cl (chloride anions), 
SO4 (sulfate ions), Width (stream width), Velocity (stream velocity).

Figure 2. Principal Component 1 (stream width, conductivity, specifically chloride (Cl-), sulfate 
(SO4

-2), potassium (K+), and sodium (Na+) ions) very strongly predicted the abundance of the invasive 
snail, Potamopyrgus (Table 4). The abundances of Potamopyrgus per sample correspond with densities 
varying from 6–11,600 individuals/m2.
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physical conditions associated with abundance and occurrence of Potamopyrgus 
were distinct from the native mollusks, our results also reveal probable physico-
chemical conditions required for habitat refuges for natives that are negatively af-

Table 5. Zero-inflated negative binomial regression analyses show that abundance of Potampyrgus 
weakly increased with the abundance of Pyrgulopsis, was moderately negatively associated with abun-
dance of Physa, and was not related to abundance of Sphaerium clams (Count Models). Abundance of 
Potampyrgus was not related to occurrence of either Pyrgulopsis or Physa but Sphaerium clams were more 
likely to occur at sites where Potamopyrgus were abundant (Zero-Inflation models). Abbreviations: SE 
for standard error, z for z-values, and p for p-values. P-values less than or equal to 0.05 are bolded.

Regression Model Coefficients Estimate SE z p

A. Pyrgulopsis Count Model Intercept 3.26 0.35 9.31 <0.001

Invasive abundance 0.01 0.01 1.82 0.07

Log Theta -0.68 0.40 -1.70 0.09

Zero-Inflation 
Model

Intercept 0.36 0.31 1.14 0.26

Invasive abundance 0.00 0.00 1.07 0.29

B. Physa Count Model Intercept 2.24 0.31 7.13 <0.001

Invasive abundance -0.004 0.52 -2.31 0.02

Log Theta 0.79 0.40 -1.53 0.13

Zero-Inflation 
Model

Intercept -0.05 0.51 -0.11 0.92

Invasive abundance -0.00 0.00 -0.84 0.40

C. Sphaerium Count Model Intercept 2.46 0.27 9.03 <0.001

Invasive abundance 0.00 0.00 0.34 0.74

Log Theta -0.76 0.25 -3.04 <0.001

Zero-Inflation 
Model

Intercept 1.41 0.46 3.07 <0.01

Invasive abundance -0.18 0.09 -1.96 0.05

Figure 3. The abundance of the native snail Pyrgulopsis weakly increased (p = 0.07) with abundance 
of the invasive snail, Potamopyrgus (a) and the native snail Physa moderately decreased (p = 0.02) with 
abundance of Potamopyrgus (b). Although the relationship between the abundance of Potamopyrgus 
and Physa appears to be strongly influenced by the two sites where the abundance of Potamopyrgus 
was highest (>500 individuals/sample), the evidence for a negative relationship is much stronger 
when the two extreme values are omitted.
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fected by Potamopyrgus because they possess chemical and physical conditions that 
are not optimal for the invasive snail; Potamopyrgus may persist, but likely not in 
high abundance. Also, by revealing the abiotic conditions that promote high abun-
dance of Potamopyrgus, we identify sites where impacts on natives, when present, 
are most likely to be greatest. Associations between abundance and occurrence of 
invasive and native mollusks reveal that either invasive snails reduced abundance 
of one of the native mollusks, Physa, or the two mollusk taxa possessed contrasting 
responses to the same physicochemical conditions.

Conditions favoring Potamopyrgus

Potamopyrgus increased in abundance with increasing stream width and conduc-
tivity and specifically with chloride, sulfate, sodium, and potassium ions. Also, 
Potamopyrgus were slightly more abundant and more likely to occur at sites with 
relatively more calcium and relatively lower water velocity and pH. By assessing 
the abundance of this invasive snail across a gradient of water and stream condi-
tions, our survey reveals the ideal environmental conditions required for the clonal 
lineage US1 (Dybdahl and Drown 2011) of Potamopyrgus in the Western U.S.A. 
However, diverse genotypes in the native range in New Zealand (water velocity: 
Holomuzki and Biggs 1999) and other invasive genotypes (water velocity: Kefford 
and Lake 1999; conductivity: Levri et al. 2020; salinity: Jacobsen and Forbes 1997; 
Gerard et al. 2003) show similar responses to many of the same environmental 
conditions. By revealing the conditions required for the invasive snail to occur and 
thrive, our results can be used to predict sites that are suitable for secondary spread 
and invasion success of Potamopyrgus.

Positive associations between abundance of Potamopyrgus and conductivity and 
specifically with sodium, chloride, sulfate, and potassium ions (PC1; Fig. 2, Table 
4) are consistent with many studies (Kerans et al. 2005; Herbst et al. 2008; Clem-
ents et al 2011; Moffitt and James 2012; Spyra and Strzelec 2014; Spyra et al. 2015; 
Szocs et al. 2015; Halabowski et al. 2020; Levri et al. 2020, reviewed in Geist et al. 
2022). For freshwater mollusks, ion concentrations must be high enough to per-
mit locomotion, growth (Brodersen and Madsen 2003; Dalesman and Lukowiak 
2010), and shell integrity (Brodersen and Madsen 2003). Consequently, laboratory 
experiments revealed stunted growth (< 100 µS/cm; Herbst et al. 2008; Larson et 
al. 2020) and high mortality (< 50 µS/cm; Herbst et al. 2008; Vazquez et al. 2016; 
Larson et al. 2020) of Potamopyrgus at relatively low conductivities. Although Mur-
ria and colleagues (2008) found a negative relationship between conductivity and 
Potamopyrgus abundance in streams in Spain, high pollutant levels (POM, DOC, 
and ammonium) probably contributed to this contrasting result.

In addition to adding to many studies showing that conductivity is important 
to the fitness of Potamopyrgus (Kerans et al. 2005; Herbst et al. 2008; Clements 
et al. 2011; Moffitt and James 2012; Spyra and Strzelec 2014; Spyra et al. 2015; 
Szocs et al. 2015; Halabowski et al. 2020; Levri et al. 2020, reviewed in Geist et al. 
2022), our study also addresses six specific ions (magnesium, calcium, potassium, 
chloride, sodium and sulfate) contributing to conductivity. In a recent comprehen-
sive review of the autecology of Potamopyrgus, Geist and authors (2022) stated the 
need for more knowledge and understanding of how water chemistry affects Pota-
mopyrgus. Our study addresses this knowledge gap by measuring concentrations of 
specific ions and revealing four ions (sodium, chloride, sulfate, and potassium) that 
directly affected abundance of Potamopyrgus.

Abundance of Potamopyrgus also increased with stream width (PC1; Fig. 2, 
Table 4). Stream width may increase snail abundance because habitat diversity often 



Conditions promoting occurrence and high abundance of Potamopyrgus

93Michele D. Larson et al. (2023), Aquatic Invasions 18(1): 83–102, 10.3391/ai.2023.18.1.103389

increases with habitat size. Densities of invasive zebra mussels (Dreissena polymorpha) 
increase with lake size possibly because larger lakes possess more habitat and avail-
able substrate (Naddafi et al. 2011). Stream width can also affect quantity of food 
for grazers. Relative to narrow streams with high canopy cover (and substantial 
allochthonous subsidies), primary production (Hill et al. 1995; Quinn et al. 1997; 
Kiffney et al. 2004; Stovall et al. 2009; Wootton 2012; Lesutiene et al. 2014; Warren 
et al. 2016) and consequently food quantity, is often higher with low canopy cover 
and high light penetration. Finally, stream width is often correlated with stable, less 
stressful environments for snails because water velocity is often inversely related 
to stream width (Dodds and Whiles 2010). Consistent with this relationship, we 
found that higher relative water velocities reduced the occurrence of Potamopyrgus.

The relationship between Potamopyrgus abundance and PC1 (stream width and 
conductivity and specifically with chloride, sulfate, sodium, and potassium ions), al-
though statistically strong (p < 0.001), was uneven (Fig. 2). Relatively large variation 
in abundance of Potamopyrgus at low (negative) values of PC1 suggests that Potamo-
pyrgus is tolerant of a large range of conductivity, especially chloride, sulfate, sodium, 
and potassium ions, and stream width. Wide environmental tolerance is consistent 
with our findings for pH (discussed below) and with a recent review of the autecol-
ogy of Potamopyrgus (Geist et al. 2022). Future studies that include a wider range 
of environments, similar to intermediate values of PC1 (intermediate stream width, 
conductivity, and specific ions), will clarify the specific nature of this relationship.

Consistent with previous field studies and experiments (Jowett et al. 1991; 
Holomuzki and Biggs 1999; Kefford and Lake 1999; Shimada and Urabe 2003; 
Lysne and Koetsier 2006; Holomuzki and Biggs 2007; Murria et al. 2008; 
McKenzie et al. 2013; Schossow et al. 2016), Potamopyrgus were slightly more 
abundant and were more likely to occur in relatively low water velocities (PC2; 
Table 4). Potamopyrgus can dislodge from substrates at stream velocities > 0.12 m/s 
(Schossow et al. 2016) with most snails dislodging at > 0.70 m/s (Holomuzki and 
Biggs 1999; Kefford and Lake 1999). Additionally, Potamopyrgus locomotion de-
creases and rate of dislodgement increases with increasing water velocity (Sepulveda 
and Marczak 2012). Also, Potamopyrgus produce slightly fewer offspring in en-
vironments with high (lotic) versus low (lentic) water velocity (Verhaegen et al. 
2021). Therefore, high water velocity conditions are stressful for Potamopyrgus by 
decreasing motility and fitness and increasing the likelihood of dislodgement.

Potamopyrgus were somewhat more abundant and more likely to occur at sites 
with relatively low pH. Multiple studies show effects of pH on mollusk presence or 
abundance (Lewin and Smolinski 2006; Spyra 2010; Sowa et al. 2019; Levri et al. 
2020) and the direction of the relationship depends on the range of pH across the 
study sites and the taxa of mollusks. For example, most studies showing abundance 
or occurrence of mollusks increasing with pH included multiple mollusk taxa or 
sites with acidic (< 7 pH) water (Spyra 2010; Sowa et al. 2019; Levri et al. 2020, 
but Lewin and Smolinski 2006 is an exception). In contrast, the water at all of 
our survey sites was basic (pH 7.4–8.5, Table 1), which probably explains why we 
found that Potamopyrgus was more likely to occur where pH was relatively lower. 
However, Potamopyrgus can occur in acidic to alkaline waters (pH 5.6–6.0, Blakely 
and Harding 2005; pH 4.0–9.0, Spyra 2010; pH 5.7–9.0, Levri et al. 2020) sug-
gesting that Potamopyrgus tolerates a large range of pH.

Potamopyrgus were slightly more abundant and were more likely to occur where 
calcium levels were relatively high (range in our study 0.0–4.3 mg/L). In freshwater 
mollusks, calcium is used to form shells (calcium carbonate) and, is required for mus-
cle contractions and nerve impulses (Thomas and Lough 1974; Madsen 1987; Dillon 
2000; Zalizniak et al. 2009). Consistent with our results, calcium concentrations al-
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tered mollusk fitness in previous studies. Growth, reproduction, and locomotion of di-
verse snails increased with calcium concentrations in laboratory experiments (Thomas 
and Lough 1974; Madsen 1987; Dillon 2000; Zalizniak et al. 2009) and low calcium 
concentrations can reduce growth and thin mollusk shells (Glass and Darby 2009).

Densities of the snails can increase with substrate complexity, perhaps by pro-
viding refuge from predation and stress from high stream velocity, or increasing 
access to forage (Stewart and Garcia 2002). Because we did not account for dif-
ferences in substrate among samples, this omission probably increased the error of 
our estimates of abundance of all mollusks.

Differences between conditions favoring native and invasive 
snails

All native mollusks differed substantially from Potamopyrgus in the physicochem-
ical conditions associated with abundance and occurrence. We found strong evi-
dence that abundance of Physa and weak evidence that abundance of Sphaerium 
clams responded oppositely to PC1 (stream width, conductivity, specifically so-
dium, chloride, sulfate, and potassium ions) than Potamopyrgus. Abundance of 
both native mollusks decreased with increasing stream width and conductivity, 
specifically with sodium, chloride, sulfate, and potassium ions (PC1). We found 
no physicochemical attributes that predicted abundance of Pyrgulopsis. The limited 
sample size of Pyrgulopsis populations in our survey, only 34% of sites possessed 
Pyrgulopsis yet 74% of sites had Potamopyrgus, could explain or contribute to this 
result. Also, none of the physical or chemical attributes describing PC1 and PC2 
predicted occurrence of any of the native mollusks. Possibly we were unable to 
identify the physicochemical attributes of water bodies that predict occurrence 
of these native taxa because the sites that we sampled do not represent the full 
range of physicochemical attributes where native mollusks occur and achieve high 
population abundance. We designed our field survey to target rivers with sites 
where Potamopyrgus were known to occur rather than sampling rivers based on the 
known distributions of any of the native mollusks. Thus, our findings about the 
physicochemical attributes associated with the occurrence and abundance of native 
mollusks are limited for the native mollusks.

Also, the Zero-Inflation models portion of ZINB, indicating no predictors of the 
occurrence of native mollusks should be interpreted with caution because our data 
were more likely to contain false negatives for the native taxa than for Potamopyrgus. 
This is because all native mollusks were much less common at our study sites than 
Potamopyrgus and less common taxa are more likely missed when the sampling area 
is too small (design error; Zuur et al. 2009). The sampling area may have been too 
small to detect some uncommon native taxa (area = 0.10–0.32 m2 in combined 
samples/year). Consequently, the physicochemical conditions associated with the 
occurrence of Potamopyrgus are more likely to be robust than for the native mol-
lusks simply because the natives were less common than the invasive snail. For this 
reason, and because we targeted our sampling at sites where Potamopyrgus were 
known to occur, rather than where specific native taxa occurred, we have less confi-
dence in the habitat associations for native mollusks than for Potamopyrgus.

Even with the limitations of our data regarding the physicochemical attributes 
associated with presence and abundance of native mollusks, the different response 
of native mollusk taxa to physical attributes of their environments may inform man-
agement and conservation of native mollusks. For example, in habitats that are less 
hospitable to Potamopyrgus (e.g. above geothermal inputs), some native mollusks 
probably have higher fitness than the invasive snail. Consequently, variation among 
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habitats within and among rivers could permit native mollusks to persist at a larger 
geographic scale. Also, because Potamopyrgus populations can decline rapidly after 
reaching high population densities (Moore et al. 2012; Gerard et al. 2018; Green-
wood et al. 2020), and Potamopyrgus can compete with native mollusks (Lysne and 
Koetsier 2008; Riley et al. 2008; Thon 2010; Larson and Black 2016), the ability 
to thrive in distinct environmental conditions could allow native mollusk taxa, and 
other native taxa, to persist and possibly rebound when Potamopyrgus populations 
decline (e.g. Moore et al. 2012; Gerard et al. 2018; Greenwood et al. 2020).

Relationship between abundance of Potamopyrgus and 
abundance and occurrence of native mollusks

Abundance of Potamopyrgus had variable effects on abundance and occurrence of na-
tive mollusks. Abundance of Potamopyrgus was moderately negatively associated with 
abundance of Physa but did not affect the likelihood of Physa presence (Table 5, Fig. 
3b). A negative association between the abundance of the two taxa is consistent with 
our finding that stream width and conductivity (PC1) had opposing effects on abun-
dance of the two mollusk taxa: abundance of Potamopyrgus strongly increased with 
stream width and conductivity whereas Physa abundance weakly decreased in these 
same conditions. Opposite relationships between the two mollusk taxa and the envi-
ronmental attributes could be caused by differences between the two taxa in habitat 
use or by competition, the most likely interaction between non-native and native taxa 
occupying the same trophic level (Levine et al. 2003), or by an interaction between 
both the physical environment and competition (Shea and Chesson 2002). However, 
because our sampling design targeted rivers supporting populations of Potamopyrgus at 
some sites, rather than targeting habitats where Physa were known to occur, the phys-
icochemical attributes associated with the abundance of Physa probably do not fully 
represent the range of sites where these native mollusks occur and achieve high popu-
lation abundance. Although the negative relationship between Potamopyrgus and Physa 
may appear to be driven by two sampling sites where Potamopyrgus were very abundant 
and Physa were uncommon (Fig. 3b), omitting data from these two sites, increased the 
negative relationship between the abundance of the two taxa (increasing from strong 
evidence to very strong evidence, sensu Muff et al. 2021). Thus, abundance of Physa 
was depressed even at relatively low abundance and density of Potamopyrgus. In con-
trast, Cope and Winterbourn (2004) found reproduction and growth of Physella acuta 
(synonym Physa acuta) could be facilitated by the presence of Potamopyrgus. Although 
high densities of Potamopyrgus can reduce abundance of native mollusks by altering 
nutrient cycling (Hall et al. 2003), dominating secondary production (Hall et al. 
2006), or attracting fish predators (Bowler 1991), to our knowledge, possible negative 
effects of Potamopyrgus on abundance of Physa have not been previously documented.

Similar to Physa, abundance of Potamopyrgus had no effect on the occurrence 
of Pyrgulopsis (Table 5). However, abundance of Pyrgulopsis weakly (p = 0.07) in-
creased with Potamopyrgus (Table 5, Fig. 3a) but was completely driven by one 
sample (highest abundance for Pyrgulopsis; Fig. 3a) with the highest co-occurring 
abundance of Pyrgulopsis and Potamopyrgus. Thus, we suspect that the slight ef-
fect is not biologically relevant; both because of the outlier and because a positive 
relationship between the two taxa contrasts with experimental conditions where 
Potamopyrgus strongly limited growth of Pyrgulopsis (Riley et al. 2008).

Abundance of Potamopyrgus moderately increased the likelihood that Sphaerium 
clams occurred at a site (Table 5). Although we found no evidence that the abundance 
of Potamopyrgus affected the abundance of Sphaerium clams, our results contrast with 
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Gerard et al. (2018) who suggested that possible competition between Potamopyrgus 
and Sphaerium clams may have driven population declines of Potamopyrgus.

Conclusions

The results of our field survey revealed the physicochemical conditions associated 
with the presence and high abundance of the invasive snail, Potamopyrgus. Reveal-
ing the environmental conditions required for the occurrence of the invasive snail 
improves our ability to predict un-invaded sites that are acceptable for establish-
ment and persistence of this snail. Management strategies focused on halting or 
slowing secondary spread of non-native taxa are critical for managing biological 
invasions (Vander Zanden and Olden 2008). Our results also revealed the combi-
nation of physicochemical conditions necessary to support populations of invasive 
snails with high ecological impact (Vander Zanden and Olden 2008). Predicting 
impact, the extent to which the consequences of establishment of non-native taxa 
will negatively affect an invaded ecosystem, is difficult (Parker et al. 1999) yet 
abundance of non-native taxa is theorized (Parker et al. 1999; Ricciardi 2003) 
and known (global meta-analysis, Bradley et al. 2019) to be a strong predictor of 
species impact. The physicochemical conditions that predict high abundance of 
the invasive snail, relatively high conductivity (especially chloride, sulfate, sodi-
um, and potassium ions) and stream width, reveal sites where the snail is likely 
to achieve high impact. Invaded sites with these physicochemical conditions and 
where snails are present but do not occur at high abundances, should be monitored 
more frequently than invaded sites that do not match these criteria. Also, un-in-
vaded sites matching the physicochemical attributes that we found to promote 
high abundance of Potamopyrgus should be granted higher levels of protection than 
sites without these attributes. Standardized methods for visual assessment and en-
vironmental DNA are effective methods for detecting Potamopyrgus (Geist et al. 
2022). Actions focusing on preventing spread of Potamopyrgus and other aquatic 
invasive species should be prioritized because restoring ecosystems following intro-
duction is often impossible (Havel et al. 2015).
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